Patient tailored solutions for challenging TEVAR cases

Samer Koussayer, MD, FACS, RVT
Assoc Prof, Al Faisal University
Section Head and consultant
Vascular & Endovascular Surgery Division
King Faisal Specialist Hospital & Research Center
Riyadh, KSA
Disclosure

I have the following potential conflicts of interest to report:

✓ Consulting: Medtronic, Gore

☐ Employment in industry

☐ Stockholder of a healthcare company

☐ Owner of a healthcare company

☐ Other(s)

☐ I do not have any potential conflict of interest
Challenges

1. Sizing.
2. Proximal landing zone
3. Distal landing zone
4. Access vessels
5. Spinal cord ischemia
6. Endoleak
1- Sizing Challenges

1- Small Aorta
2- Dissection
Oversizing

- Aneurysms: 10-20% oversize
- Aortic dissection: 0-10% oversize
- Aortic transections: 0-20% oversize
- Chimney/snorkeling: 30% oversize
1- Graft Infolding

- 23 YOM, MVA
- Aortic Transection
Treatment
2- Type B dissection

- Measure diameter of healthy aorta immediately proximal to the dissection and 2cm proximal.
- Distal landing zone measurement is an estimate.
- Length:
 - cover the proximal tear mainly
 - Cover The aneurysmal part of the dissection
- Use CTA and IVUS for more accurate sizing
- 10% or less oversizing
- 76 YOM, chronic Type B Aortic Dissection.
- Aneurysmal dilatation of thoracoabdominal aorta.
- Multiple entry sites
TEVAR, EVAR, Rt Renal and iliac covered stents
Debranching Procedure
2- Proximal Landing Zone Challenges

1- Severe Neck Angulation
2- Covering Zones 0-1-2
3- Inadvertent Carotid Coverage
1- Arch Angulation

- Do not land in high angulation areas with no inner curve (bird’s beak)
- Avoid areas with thrombus and calcium
- Use super stiff wire: Lunderquist Double-Curve wire
2- Zone II TEVAR (Covering LT SCA)

- Intentional LSA coverage during TEVAR required in 10 – 50% of cases to achieve proximal seal
- LSA coverage usually well tolerated (90% of the patients)
Carotid-Subclavian Bypass

- All patients
- Selectively:
 - Definite indications
 - Patent LIMA-LAD
 - Patent LUE dialysis access
 - Dominant L vertebral artery
 - L vertebral off arch
 - Strongly consider
 - Extensive aortic coverage
 - in patient with risk factors for paraplegia (e.g. prior AAA repair, occluded internal iliac arteries)
Covering Zones 0 & 1

- For Zone 1:
 - carotid-carotid bypass / transposition
 - Chimney/periscope
- For zone 0:
 - Aortic arch debranching
 - Chimney/periscope
Chimney Snorkeling
Aortic Arch Debranching
Debranching aortic arch
3- Inadvertent Carotid Coverage

- **Prevention:** Adjust your c-arm for parallax
Solutions

1) Device pull-down
2) Bailout wire/balloon: Get wire retrograde access
 ✓ PTA
 ✓ Stent the origin of LT CCA: chimney/snorkel
3) Extra-anatomic bypass
 ✓ Carotid-carotid bypass
 ✓ Aortic-carotid bypass
4) Conversion to open repair (rare)
Balloon pull out
3- Distal Landing Zone Challenges
The Pathology extents to involve the Visceral Branches.
• Debranching / Hybrid
• Chimney / Snorkeling / Periscopes
• Sandwich
• Branching / Fenestration
Challenge 1: Ruptured TAAA

- A 56-yo gentleman, who had previous h/o large descending *Thoracic aortic aneurysm s/p TEVAR in 2008.*
2011

- Left leg claudication and severe abdominal angina (became cachectic).
- **CTA:**
 - Large TAAA type III
 - Increase size of supra celiac aorta (8.6cm) and IRAAA (6.6cm).
Bilateral renal artery stenosis
Atrophic Rt Kidney

LT CIA & EIA occlusion
Rupture TAAA

- Presented to ER with severe back pain and hypotension.
- Stat C-X Ray: contained ruptured thoracic aneurysm.
Postoperative CTA
52-year-old male was referred to us with enlarging thoracoabdominal aortic aneurysm Type3
• C/O: severe leg claudication & back pain.
• PMH:
 – Severe COPD.
 – stroke with mild right hemiparesis and slurred speech.
 – hypertension, diabetes and epilepsy.
Work up

- **CTA:**
 - Large Type III TAAA (6.5cm).
 - Thrombosis of IR portion of TAAA and both CIA.
 - Stenosis of celiac artery, Patent SMA.
 - Left renal artery occlusion with atrophic left kidney.
 - Right renal stenosis.
 - Normal creatinine level.
Aortobifemoral Bypass Graft
Aorto-Renal & Aorto-Celiac/SMA Bypass
Anastomosis of the graft to the Celiac Artery
Challenge 3 - SMA and Celiac artery chimneys
4- ACCESS VESSELS
Challenges
Calcified/Narrow Iliac Arteries

- Try contralateral iliac artery
- Use serial dilators
- Balloon angioplasty or stent any stenoses
- Iliac conduits: 10 mm Dacron graft
Tortuous Iliac Arteries

- Super-stiff wires (Lunderquist, Amplatz) to straighten the access vessel
- Hand pressure on abdominal wall to reduce iliac tortuosity
- Buddy wire technique
Body Floss technique: Through & Through Wire

To eliminate tortuosity & the upward push
5- Spinal Cord Ischemia
Neurologic Deficits

- CSF Drain:
 - Yes, check for malfunction
 - No, insert one immediately

- Increase mean BP >90 mmHg:
 - Spinal cord perfusion pressure = MAP-ICP
 - Avoid hypotension,

- Good O2 delivery:
 - O2 sat > 95%
 - Hgb > 12 mg/dl
6- Endoleaks
Endoleak

◆ **Type I:**
 - Repetitive ballooning with prolonged inflation.
 - Placement of proximal stent graft.
 - Consider debranching, chimney, snorkle
 - Conversion to open procedure
 - Heli – FX system
◆ **Type II:** Watchful waiting.
◆ **Type III:** additional stent graft
◆ **Type VI, V:** Watchful waiting.
Conclusions

- Rapid improvement in Endograft technology over last 10 years has expanded the indications for Endoluminal grafting
- Hybrid repair (debranching), fenestrated and branched graft, sandwich and Chimney techniques are various options available for challenging anatomy in high risk patients.
- The choice of a preferred technique depends on Experience, availability and Urgency
- The “fit” young patient with unfavorable anatomy is still controversial
.. maybe we should try to think out of the box?

Thank You
.. maybe we should try to think out of the box?

Thank You